If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12k^2+10k=9
We move all terms to the left:
12k^2+10k-(9)=0
a = 12; b = 10; c = -9;
Δ = b2-4ac
Δ = 102-4·12·(-9)
Δ = 532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{532}=\sqrt{4*133}=\sqrt{4}*\sqrt{133}=2\sqrt{133}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{133}}{2*12}=\frac{-10-2\sqrt{133}}{24} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{133}}{2*12}=\frac{-10+2\sqrt{133}}{24} $
| 10x-3x=52 | | 2/3+b=4/7 | | 7(1-z)=8(1+z) | | 4=-k+1+3 | | 11x+11=4x+11 | | (j-8)^2=36 | | 11-2v=3-4 | | -2=-3+b/8 | | 4x+12=8+5x-35 | | -46=2(n-6) | | 6(7-2p)=3(5p)+1 | | 4(4)-y=-2 | | 36x-27-23x=35 | | w^2-24=5w | | 813=y10 | | 2(a=5)=16 | | 4(4)-y=2 | | -3=-1+n/5 | | .6=m/7-3 | | 3+y/3=24 | | 12=3b-6+6b | | 30-x=45-2x | | -3=-1=n/5 | | 4x+20=8+10x-9 | | -v/2=-49 | | -4x+6=-58 | | 6(4x+4)^2+6=300 | | 3x-2-8=7 | | 12x+10=10x-5 | | -28=w/8 | | 7(12x-10)+4(1-11x)=3x-6+7 | | x+8=2+5x-10 |